电话:4006-505-646
首页 | 服务器品牌 | RAID分类 | 数据恢复成功案例 | 客户服务
 您现在的位置:首页>>RAID>>复合阵列RAID>>正文

RAID概念和级别

     RAID是“Redundant Array of Independent Disks”的缩写,中文意思独立磁盘冗余阵列,早期又称“Redundant Array of Inexpensive Disks”廉价磁盘冗余阵列,由美国加州伯克利分校的D.A.Patterson教授在1988年提出。

        简单的说,RAID是一种把多块独立的硬盘(物理硬盘)按不同方式组合起来形成一个硬盘组(逻辑硬盘),从而提供比单个硬盘更高的存储性能和提供数据冗余的技术。组成磁盘阵列的不同方式成为RAID级别(RAID Levels)。

        数据冗余的功能是在用户数据一旦发生损坏后,利用冗余信息可以使损坏数据得以恢复,从而保障了用户数据的安全性。

        RAID的采用为存储系统(或者服务器的内置存储)带来巨大利益,其中提高传输速率和提供容错功能是最大的优点。

        RAID通过同时使用多个磁盘,提高了传输速率。通过在多个磁盘上同时存储和读取数据来大幅提高存储系统的数据吞吐量(Throughput)。在 RAID中,可以让很多磁盘驱动器同时传输数据,而这些磁盘驱动器在逻辑上又是一个磁盘驱动器,所以使用RAID可以达到单个磁盘驱动器几倍、几十倍甚至 上百倍的速率。这也是RAID最初想要解决的问题。因为当时CPU的速度增长很快,而磁盘驱动器的数据传输速率无法大幅提高,所以需要有一种方案解决二者 之间的矛盾。

        通过数据校验,RAID可以提供容错功能。这是使用RAID的第二个原因,因为普通磁盘驱动器无法提供容错功能,如果不包括写在磁盘上的CRC(循环冗余 校验)码的话。RAID容错是建立在每个磁盘驱动器的硬件容错功能之上的,所以它提供更高的安全性。在很多RAID模式中都有较为完备的相互校验/恢复的 措施,甚至是直接相互的镜像备份,从而大大提高了RAID系统的容错度,提高了系统的稳定冗余性。

RAID 0:条带化结构

        RAID 0:以条带形式将RAID组的数据均匀分布在各个硬盘中,因此具有很高的数据传输率。它没有数据冗余,尽管不占用CPU资源,但并不能算是真正的RAID 结构。RAID 0只是单纯地提高性能,并没有为数据的可靠性提供保证,而且其中的一个磁盘失效将影响到所有数据。因此,RAID 0不能应用于数据安全性要求高的场合。

RAID 1:镜象结构

        RAID 1:它是通过磁盘数据镜像实现数据冗余,在成对的独立磁盘上产生互 为备份的数据,100%的数据冗余。当原始数据繁忙时,可直接从镜像拷贝中读取数据,因此RAID 1可以提高读取性能。RAID 1的成本比较高,其硬盘空间利用率只有1/2。当一个磁盘失效时,系统可以自动切换到镜像磁盘上读写,而不需要重组失效的数据,提供了很高的数据安全性和 可用性。最小磁盘数2个。

RAID2:带海明码校验

        RAID 2:将数据条块化地分布于不同的硬盘上,使用称为“加重平均纠错码(海明码)”的编码技术来提供错误检查及恢复。这种编码技术需要RAID中第1个、第2 个、第4个……第2n次幂个硬盘都是校验盘。RAID2的硬盘利用率很低,目前基本不再使用。

RAID3:带奇偶校验码的并行传送

        RAID 3:它同RAID 2类似,都是将数据条块化分布于不同的硬盘上,区别在于RAID 3使用简单的奇偶校验,并用单块磁盘存放奇偶校验信息。如果一块磁盘失效,奇偶盘及其他数据盘可以重新产生数据;如果奇偶盘失效则不影响数据使用。 RAID 3数据分布式存储在连续的硬盘上,具有较高的读速率,适合大文件连续操作的应用,但有数据盘故障时,每次读操作时都需要进行校验计算,读性能大幅度下降。 最小磁盘数3个。

RAID4:带共享校验码的独立磁盘结构

        RAID 4RAID 4同样也将数据条块化并分布于不同的磁盘上,但条块单位为块。不同于RAID3的是,RAID 4使用一块磁盘作为奇偶校验盘,每次写操作都需要访问奇偶盘,这时奇偶校验盘会成为瓶颈,因此RAID 4在商业环境中也很少使用。

RAID5:分布式奇偶校验的独立磁盘结构

        RAID5RAID5实际是由RAID3所衍生而来的技术。而RAID3可以看作是RAID0的一种扩展,它也是把数据分块存放在各个硬盘中的,不过为 了增加数据的安全性,RAID3又另外接一块硬盘存放数据奇偶校验信息,由于在存取的时候要进行数据的奇偶校验,所以RAID3的工作速度比RAID0 慢一些,如果存储数据的硬盘发生损坏,可利用校验盘上的校验信息恢复数据,不过如果校验盘也损坏,就无法恢复数据了。RAID5则针对RAID所存在的安 全隐患,将数据奇偶校验信息均匀分布在各数据硬盘上,硬盘同时保存数据和校验信息,这样就不用担心校验盘损坏所带来的数据安全问题,RAID 5是最常用的RAID方式之一。最小磁盘数3个。

RAID6:带有两种分布存储的奇偶校验的独立磁盘结构

        RAID 6:与RAID 5相比,RAID 6增加了第二个独立的奇偶校验信息块,能够允许两个硬盘同时失效,数据的可靠性非常高。但目前RAID 6还没有统一的标准,各家公司的实现方式都有所不同。相较于RAID5,磁盘的利用率更低,且出现硬盘失效时,RAID重建时对系统性能影响更大、重建时 间,因此实际应用比较少。最少磁盘数4个。

RAID7:优化的高速数据传送磁盘结构

        RAID 7:这是一种新的RAID标准,其自身带有智能化实时操作系统和用于存储管理的软件工具,可完全独立于主机运行,不占用主机CPU资源。RAID 7可以看作是一种存储计算机(Storage Computer),它与其他RAID标准有明显区别。

除了以上的各种标准,还可以结合多种RAID规范来构筑所需的RAID阵列,例如RAID 10,用户一般可以通过灵活配置磁盘阵列来获得更加符合其要求的磁盘存储系统。

RAID10RAID0+1:高可靠性与高效磁盘结构

        RAID 10:是将镜像和条带进行两级组合的级别,第一级是RAID1镜像对,第二级为RAID 0,这种组合提高了读/写速率,并可用允许硬盘损坏,因此RAID10也是一种应用比较广泛的RAID级别。但是RAID10RAID1一样只有1/2 的磁盘利用率。最小硬盘数4个。

        RAID 0+1:也是将条带和镜像进行两级组合的RAID级别,第一级是RAID 0,第二级为RAID 1。一般来说,RAID 0+1的失效概率要比RAID 10大,不过无硬盘故障下,RAID 0+1的读取速度要比RAID 10快。

RAID30:专用奇偶位阵列条带

        RAID-30:象RAID-0一样,跨磁盘抽取数据;象RAID-3一样,使用专用奇偶位。RAID-30提供容错能力,并支持更大的卷尺寸。象 RAID-10一样,RAID-30也提供高可靠性,因为即使有两个物理磁盘驱动器失效(每个阵列中一个),数据仍然可用。RAID-30最小要求有6 驱动器,它最适合非交互的应用程序,如视频流、图形和图象处理等。这些应用程序顺序处理大型文件,而且要求高可用性和高速度。

RAID50:分布奇偶位阵列条带

        RAID50:象RAID-0一样,跨磁盘抽取数据;象RAID-5一样,使用分布式奇偶位。RAID-50提供数据可靠性,优秀的整体性能,并支持更大 的卷尺寸。象RAID-10RAID-30一样,即使两个物理磁盘发生故障(每个阵列中一个),也不会有数据丢失。RAID-50最少需要6个驱动器, 它最适合需要高可靠性存储、高读取速度、高数据传输性能的应用。这些应用括事务处理和有许多用户存取小文件的办公应用程序。最小硬盘数6个。

  

 

 

 

上一篇:Raid介绍
下一篇:RAID数据恢复常见故障处理宝典
 
版权所有@北京北亚宸星科技有限公司  总部电话:4006-505-646  中国·北京·海淀区永丰基地丰慧中路7号新材料创业大厦B座205室